Search results for "Flexural behaviour"

showing 4 items of 4 documents

Flexural behaviour of glulam timber beams reinforced with FRP cords

2015

Abstract Glued laminated timber (glulam) is widely used as a construction material to make up lightweight and large span structures. The basic principle of this material consists in bonding together a number of layers of dimensioned timber with structural adhesives, in order to increase strength and stiffness of the member, and allowing to make up sustainable structures with great visual impact. Recent applications showed the effectiveness of fibre-reinforced polymer (FRP) composites in enhancing the structural performances of glulam beams, with particular reference on their flexural and shear strength. In fact FRP reinforcements could be used to strengthen existing structures or to reduce …

Materials scienceBendingFlexural strengthFRP strengtheningGlued laminated timbermedicineShear strengthGeneral Materials ScienceComposite materialCivil and Structural EngineeringFlexural behaviourbusiness.industryStiffnessEpoxyStructural engineeringBuilding and ConstructionFibre-reinforced plasticSettore ICAR/09 - Tecnica Delle CostruzioniFRP cordvisual_artvisual_art.visual_art_mediumGlulamAdhesiveMaterials Science (all)medicine.symptombusiness
researchProduct

Mechanical Behaviour of a Green Sandwich Made of Flax Reinforced Polymer Facings and Cork Core

2015

Abstract This work investigates the flexural behavior of a composite sandwich made of flax fibers reinforced skin facings and an agglomerated cork core, to be employed as an eco-friendly solution for the making of structural components of small sailing boats. An experimental mechanical characterization of the strength and stiffness flexural behavior of the proposed sandwich is carried out, providing a comparison of performances from three implemented assembling techniques: hand-lay-up, vacuum bagging and resin infusion. Sandwich beams have been tested under three point bending (TPB) at various span lengths. A procedure is also proposed and implemented to consider the potential influence of …

Materials scienceThree point flexural testComposite numberCorkengineering.materialSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineEngineering (all)Flexural strengthIndentationmedicineWinkler foundationLong Flax FibreComposite materialSettore ING-IND/15 - Disegno E Metodi Dell'Ingegneria IndustrialeComposite SandwichAgglomerated Cork CoreEngineering(all)business.industryWinkler foundation.StiffnessFlexural rigidityGeneral MedicineStructural engineeringFlexural BehaviourengineeringLong Flax FibresIndentationmedicine.symptombusinessBeam (structure)Procedia Engineering
researchProduct

Flexural behaviour of concrete corbels containing steel fibers or wrapped with FRP sheets

2005

In the present paper an analytical and experimental investigation referring to the flexural behaviour of reinforced concrete corbels subjected to vertical forces is presented. For fixed shape and dimensions of the corbels the experimental investigation analyses the effects of the following: longitudinal and transverse steel reinforcements; fiber reinforced concrete (FRC) with hooked steel fibers; external wrapping retrofitting technique with a thin layer of carbon fiber sheet (CFRP). The analytical model based on equivalent truss structures, allows one to determine the bearing capacity of corbels, distinguishing the different ultimate states reached. The analytical results are then compared…

Materials scienceflexural behaviourTrussBendingFiber-reinforced concretelaw.inventionexperimental investigationFlexural strengthCorbellawconfinement effectGeneral Materials ScienceBearing capacityCFRPComposite materialCivil and Structural EngineeringR.C. corbelbusiness.industryFRCBuilding and ConstructionStructural engineeringFibre-reinforced plasticSettore ICAR/09 - Tecnica Delle Costruzionisteel fiberMechanics of MaterialsSolid mechanicsMaterials Science (all)businessMaterials and Structures
researchProduct

Bending effect on the risk for delamination at the reinforcement/matrix interface of 3D woven fabric composite using a shell-like RVE

2012

This paper presents a computational homogenisation-based technique for flexural effects in textile reinforced composite planar shells. An homogenisation procedure is used for the in-plane and the out-of-plane behaviour of three-dimensional woven composite shells, taking the in-plane periodicity of the material into account while relaxing any periodicity tying in the thickness direction. Several types of damage (matrix or reinforcement cracking, delamination, …) can appear in a composite material. In this paper, material non-linear computations are used to assess the importance of bending on the risk for delamination at the reinforcement/matrix interface. The normal and tangential stresses a…

Résistance et comportement des matériauxMaterials scienceComposite number[ SPI.MAT ] Engineering Sciences [physics]/MaterialsShell (structure)Non-linear flexural behaviour02 engineering and technologyBendingSciences de l'ingénieur01 natural sciencesWoven composite[SPI.MAT]Engineering Sciences [physics]/MaterialsStress (mechanics)Flexural strengthDebonding0101 mathematicsComposite materialComputational homogenisationThermoplastic yarnsCivil and Structural EngineeringFiber pull-outRésistance des matériauxbusiness.industryDelaminationStructural engineering021001 nanoscience & nanotechnology010101 applied mathematicsDelaminationCeramics and Composites0210 nano-technologybusinessFailure mode and effects analysis
researchProduct